Newton's Method

Newton法

思想

  • 若$x^{ * }$是无约束问题局部解,则有

    可求解此问题,得到无约束问题最优解

  • 原始问题是非线性,考虑求解其线性逼近,在初始点$x^{(1)}$ 处泰勒展开

    解得

    作为$x^{ * }$的第二次近似

  • 不断迭代,得到如下序列

    • $d^{(k)}$:Newton方向,即以下方程解

算法

  • 初始点 $x^{(1)}$、精度要求 $\epsilon$,置 $k=1$

  • 考虑 $|\nabla f(x^{(k)})| \leq \epsilon$

    • 若满足,则停止计算,得到最优解 $x^{(k)}$
    • 否则求解如下方程,得到 $d^{(k)}$

  • 如下设置,并转2

特点

  • 优点

    • 产生点列 ${x^{k}}$ 若收敛,则具有二阶收敛速率
    • 具有二次终止性,事实上对正定二次函数,一步即可收敛
  • 缺点

    • 可能会在某步迭代时目标函数值上升
    • 当初始点 $x^{(1)}$ 距离最优解 $x^{ * }$ 时,产生的点列 可能不收敛,或者收敛到鞍点
    • 需要计算 Hesse 矩阵
      • 计算量大
      • Hesse 矩阵可能不可逆,算法终止
      • Hesse 矩阵不正定,Newton 方向可能不是下降方向

阻尼/修正 Newton

  • 克服 Newton 法目标函数值上升的缺点
  • 一定程度上克服点列可能不收敛缺点

算法

  • 初始点 $x^{(1)}$、精度要求 $\epsilon$,置 $k=1$

  • 考虑 $|\nabla f(x^{(k)})| \leq \epsilon$

    • 若满足,停止计算,得到最优解 $x^{(k)}$
    • 否则求解如下方程得到 $d^{(k)}$
  • 一维搜索,求解一维问题

    得到 $\alpha_k$,如下设置并转2

其他改进

  • Newton 法、修正 Newton 法的改进方向
    • 结合最速下降方向修正迭代方向
    • Hesse 矩阵不正定情形下的替代

结合最速下降方向

  • Newton 方向和最速下降方向结合
  • 设 $\theta_k$ 是 $$ 之间夹角,显然希望 $\theta < \frac \pi 2$

  • 则置限制条件 $\eta$,取迭代方向

Negative Curvature

  • Hesse 矩阵非正定时,选择负曲率下降方向 $d^{(k)}$(一定存在)
  • Hesse 矩阵非正定时,一定存在负特征值、相应特征向量 $u$

    • 取负曲率下降方向作为迭代方向

    • $x^{(k)}$ 处负曲率方向 $d^{(k)}$ 满足

修正 Hesse 矩阵

  • 取迭代方向 $d^{(k)}$ 为以下方程的解

  • $v_k$:大于 $\nabla^2 f(x^{(k)})$ 最大负特征值绝对值
Author

UBeaRLy

Posted on

2019-06-04

Updated on

2019-06-04

Licensed under

Comments