常用等式

常用定理

Lucas 定理

  • $p < 10^5$:必须为素数

Holder 定理

$|x|^{*}_p = |x|_q$

  • $\frac 1 p + \frac 1 q = 1$

未归类概念

Radial Basis Function

  • RBF 径向基函数:取值仅依赖到原点距离的实值函数,即 $\phi(x) = \phi(|x|)$

    • 也可以按照距离某中心点 $c$ 的距离定义,即 $\phi(x) = \phi(|x-c|)$
    • 其中距离一般为使用 $L_2$ 范数,即欧式距离
    • 函数 $\phi$ 一般与 $|x|$ 负相关
  • 径向基函数最初用于解决多变量插值问题

    • 即以各样本为中心创建多个径向基函数
    • 多个径向基函数加权加和即得到拟合的函数曲线,可用于函数插值

    rbf_for_interpolation

常见径向基函数

  • 定义 $r=|x-x_i|$
  • 高斯函数

  • Multiquadric 多二次函数:

  • Inverse Quadric 逆二次函数:

  • Polyharmonic Spline 多重调和样条:

  • Thin Plate Spline 薄板样条(多重调和样条特例):

在线最优化

Truncated Gradient

L1正则化法

L1正则化

  • $\lambda$:正则化项参数
  • $sgn$:符号函数
  • $g^{(t)}=\nabla_w L(w^{(t)}, Z^{(t)})$:损失函数对参数梯度
  • L1正则化项在0处不可导,每次迭代使用次梯度计算正则项梯度
  • OGD中每次根据观测到的一个样本进行权重更新 (所以后面正则项次梯度只考虑非0处???)

简单截断法

简单截断法:以$k$为窗口,当$t/k$非整数时,使用标准SGD迭代, 否则如下更新权重

  • $w^{(t)}$:模型参数
  • $g^{(t)}$:损失函数对模型参数梯度
  • $T_0$:截断函数
  • $\theta$:控制参数稀疏性

截断梯度法

截断梯度法:以$k$为窗口,当$t/k$非整数时,使用标准SGD迭代, 否则如下更新权重

  • $\lambda, \theta$:控制参数$w$稀疏性
  • 对简单截断的改进,避免在实际(OgD)中参数因训练不足过小 而被错误截断,造成特征丢失

    truncated_gradient_compared_with_l1

Forward-Backward Spliting

FOBOS:前向后向切分,权重更新方式为proximal method如下

L1-FOBOS

L1-FOBOS:即令$Phi(w)=\lambda |w|_1$,则根据可加性如下

  • $V=[v_1, v_2, \cdots, v_N]:=w^{(t.5)}$:为方便
  • $\tilde \lambda := \eta^{t.5} \lambda$:为方便
  • $\eta^{t.5}$:学习率,常取 $\eta^{(t)} \in \theta(\frac 1 {\sqrt t})$
  • 则对$w_i$求次梯度、分类讨论,解得

    • 可以理解为:到当前样本为止,维度权重小于阈值 $\eta^{(t.5)} \lambda$)时,认为该维度不够重要, 权重置为0

    • 可视为$k=1, \theta=\infty$的Tg算法

  • 另外,显然有$w_i^{(t+1)} v_i \geq 0$

    • 考虑$w_i^{(t+1)}$使得目标函数最小,带入$w=0$则得

Regularized Dual Averaging

RDA算法:正则对偶平均算法,权重更新方式为 包含[增广]正则项的最速下降

  • 目标函数包括三个部分

    • $\frac 1 t \sum_{r=1}^t g^{(r)} w$:包含之前所有梯度 均值
    • $\Phi(w)$:正则项
    • $\frac {\beta^{(t)}} t h(w)$:额外正则项,严格凸,且 不影响稀疏性
  • 相较于TG、FOBOS是从另一方面求解在线最优化,更有效地提升 特征权重稀疏性

L1 RDA

L1 RDA:令$\Phi(w) := \lambda |w|_1$, 再设$h(w) := |w|_2^2$,根据可加性则有

  • $\lambda > 0, \gamma > 0$
  • $\bar gi^{(t)} = \frac 1 t \sum{r=1}^t g_i^{(r)}$
  • 对$w_i$求次梯度、置零、求解得

    • 可以理解为:某维度梯度累计均值绝对值$|bar g_i^{(t)}$ 小于阈值$\lambda$时,对应权重被置零、产生稀疏性
  • 相较于L1-FOBOS的截断

    • 截断阈值为常数,更加激进、容易产生稀疏性
    • 截断判断对象为梯度累加均值,避免由于训练不足而产生 截断
    • 只需条件$\lambda$参数,容易权衡精度、稀疏性

Follow the Regularized Leader

FTRL:综合考虑L1-RDA、L1-FOBOS

L1-FOBOS、L1-RDA变换

  • 将L1-FOBOS类似近端算法收敛证明中展开、去除无关项、放缩, 得到类似L1-RDA目标函数

  • 将L1-RDA目标函数整体整体放缩,得到

    • $g^{(1:t)} := \sum_{r=1}^t g^{(r)}$
  • FTRL综合考虑L1-FOBOS、L1-RDA,得到目标函数

    • 使用累加梯度更新,避免因训练不充分错误截断
    • 包含L1-FOBOS、L1-RDA全部正则化项

求解

  • 将FTRL中最后一项拆分、去除无关项

  • 则同样根据可加性,对各分量求次梯度、置零、求解得

  • 其中学习率$\eta$为类似Adagrad优化器的学习率,但包括可学习 参数$\alpha, \beta$

Proximal Gredient Method

Proximal Operator

  • $f(x)$:凸函数
  • 由于$L_2$范数的强凸性,近端算子也强凸,解总是唯一存在
  • 直观理解:寻找距离点$x$不太远、$f(u)$尽可能小的$u$
  • 以下算法都是近端算法的特例
    • shrinkage thresholding algorithm
    • projected Landweber
    • projected gradient
    • alternating projections
    • alternating-directions method of multipliers
    • alternating split Bregman

proximal_operator

  • 近端算子连续可微

Moreau Envolop

  • $\gamma > 0$:平衡参数,$\gamma = 1$即为普通近端算子

近端算子求解

  • 对一般凸$f(x)$,通常使用次梯度进行优化,其近端算子解为 (即解变动方向$p-x$为负次梯度方向)

  • 对光滑凸函数$f$,上述等式对其近端算子约简为 (即解变动方向$p-x$为负梯度方向)

性质

分离函数

  • 取$f(x) = |x|_1$,即可得即软阈值算子

    • 参考坐标下降:近端算子中二次项中各分量无关,所以一轮 迭代即为最优解

仿射函数分解

  • $A^T A = \alpha I, \alpha > 0$:线性变换
  • $g$:良好闭凸函数

第一投影定理

  • 取$f(x)$为示性函数、约束条件,即得到投影算子

第二临近定理

  • $f$为良好闭凸函数,则以下三条等价
    • $y = prox_f(x)$
    • $x - y \in \partial f(y)$:由近端算子定义即得
    • $\forall z, \leq f(z) - f(y)$

Moreau Decomposition

最小值

证明

  • $x_f = \arg\min_x f(x)$
  • $x_p = \arg\min_x prox_f(x)$

  • $f(x)=c$:

Projection Operator

投影算子

  • 点$x$在凸集$C$上的投影:$X$上距离$x$的欧式距离最近的点

Alternating Projection Method

POCS/project onto convex sets method:用于解同时满足多个 凸约束的算法

  • $f_i$作为非空闭凸集$C_i$示性函数,表示一个约束,则整个 问题约简为convex feasibility problem

  • 只需要找到位于所有$C_i$交集的解即可

  • 每次迭代

  • 在其他问题中投影算子不再适合,需要更一般的算子,在其他 各种同样的凸投影算子中,近端算子最合适

Proximal Gradient Method

近端算法:分两步分别优化可微凸$F(x)$、凸$R(x)$,近似优化目标 函数整体,不断迭代直至收敛

  • $F(x)$:可微、凸函数
  • $\nabla F(x)$:Lipschitz continous、利普希茨常数为$L$
  • $R(x)$:下半连续凸函函数,可能不光滑
  • $\mathcal{H}$:目标函数定义域集合,如:希尔伯特空间
  • gredient step:从$x^{(k)}$处沿$F(x)$负梯度方向微小移动 达到$x^{(k.5)}$

  • proximal operator step:在$x^{(k.5)}$处应用$R(x)$近端 算子,即寻找$x^{(k.5)}$附近且使得$R(x)$较小点

目标函数推导

  • $\frac {\gamma} 2 |\nabla F(x)|_2^2, F(x)$:与$u$无关 ,相互替换不影响极值
  • $0 < \gamma \leq \frac 1 L$:保证最后反向泰勒展开成立
  • 则$prox_{\gamma R}(x-\gamma \nabla F(x))$解即为 “原问题最优解”(若泰勒展开完全拟合$F(x)$)

    • 近端算法中距离微调项部分可加法分离
    • 若$R(x)$部分也可分离,则整个目标函数可以分离,可以 拆分为多个一元函数分别求极值
  • 考虑泰勒展开是局部性质,$u$作为极小值点只能保证在$x$附近 领域成立,可将近端算子解作为下个迭代点

  • 迭代终止条件即

二阶近似证明

  • $\nabla^2 F(\zeta)$:凸函数二阶导正定
  • $|\nabla F(u) - \nabla F(x)|_2 \leq L |u-x|_2$: $\nabla F(x)$利普希茨连续性质

参数确定

  • $L$已知时,可直接确定$\gamma \in (0, \frac 1 L]$,

  • 否则可线性迭代搜索$\gamma := \beta \gamma,\beta < 1$, 直至

    • $PG{\gamma R}(x)=x-prox{\gamma R}(x-\gamma \nabla F(x))$
    • 直接根据下述利普希茨条件须求Hasse矩阵,计算量较大

反向推导

  • 对$F(x)+R(x)$在$x_0$附近作泰勒展开

    • $\lambda \in (0, \frac 1 L]$
    • $L$:$F(x)$利普希茨常数
    • $\leq$:由Lipschitz连续可取
    • 则不等式右边就是$F(x)+R(x)$的一个上界,可以对将对其 求极小化转化对此上界求极小
  • 考虑对极小化目标添加常数项不影响极值,对不等式右侧添加 与$u$无关项$\frac \gamma 2 |\nabla F(x)|_2^2$、剔除 剔除$F(x)$凑出近端算子

近端算法推广

问题推广

  • 求解non-differentiable凸优化问题的通用投影形式
  • $f_i(x)$:凸函数,不一定处处可微
  • 目标函数中包含不处处连续可微函数,整个目标函数不光滑

    • 无法使用传统的光滑优化手段,如:最速下降、共轭梯度
    • 极小化条件为$0 \in \partial(F+R)(x)$
  • 分开考虑各个函数,对非光滑函数使用近端算子处理

算子推广

  • 考虑使用Bregman Divergence替代近端算子中欧式距离
  • 取$\mu(x) = \frac 1 2 |x|_2^2$时,即为普通近端算子

Coordinate Descent

坐标下降

坐标下降法:在当前点处延一个坐标方向进行一维搜索以求得函数 的局部极小值

  • 非梯度优化算法,但能提供超过一阶的信息
    • SMO算法就是两块贪心坐标下降

说明

  • 优化方向从算法一开始就固定,如:选择线性空间中一组基作为 搜索方向

  • 循环极小化各坐标方向上目标函数值,即:若$x^k$给定,则

    • $k$:第k轮迭代
    • $i$:某轮迭代中更新第i个方向
  • 对初始值为$X_0$得到迭代序列$X_1, \cdots, X_n$,对精确 一维搜索类似最速下降有

  • 若某轮迭代中目标函数无法被有优化,说明已经达到驻点

Adaptive Coordinate Descent

自适应坐标下降:变换坐标系使得在考虑目标函数的情况下,新坐标 间尽可能不相关

  • 对非可拆分函数(可加?),算法可能无法在较小迭代步数中 求得最优解

    • 可采用适当坐标系加速收敛,如:主成分分析进行自适应 编码
    • 性能远超过传统坐标下降算法,甚至可以达到梯度下降的 性能

    adaptive_coordinate_descent_illustration

  • 自适应坐标下降具有以下特性,和最先进的进化算法相当

    • 缩放不变性
    • 旋转不变性

Block Coordinate Descent

块坐标下降:在当前点处在一个超平面内方向进行搜索以求得函数 的局部极小值

  • 即同时更新一组坐标的坐标下降

Lasso求解

  • 目标函数

  • RSS求导

    • $(\frac {\partial RSS} {\partial x})_i$:RSS对$x$ 导数第$i$分量,即对$x_i$偏导
    • $A_{:i}$:$A$第$i$列
    • $x_{i0}$:$x$第$i$分量置零
    • $zi = (Ax{i0} - y)^T A_{:i}$
    • $\rhoi = A{:i}^T A_{:i}$
  • 则$x_i$整体次梯度为

  • 分类讨论:令整体次梯度为0求解$x_i$、回带确定参数条件

    • 此算子也称soft threshholding

    lasso_ridge_lse

距离函数

距离

  • 距离可认为是两个对象 $x,y$ 之间的 相似程度
    • 距离和相似度是互补的
    • 可以根据处理问题的情况,自定义距离

Bregman Divergence

  • $Phi(x)$:凸函数
  • 布雷格曼散度:穷尽所有关于“正常距离”的定义

    • 给定 $R^n * R^n \rightarrow R$ 上的正常距离 $D(x,y)$,一定可以表示成布雷格曼散度形式
    • 直观上:$x$处函数、函数过$y$点切线(线性近似)之差
      • 可以视为是损失、失真函数:$x$由$y$失真、近似、添加噪声得到
  • 特点

    • 非对称:$D(x, y) = D(y, x)$
    • 不满足三角不等式:$D(x, z) \leq D(x, y) + D(y, z)$
    • 对凸集作 Bregman Projection 唯一
      • 即寻找凸集中与给定点Bregman散度最小点
      • 一般的投影指欧式距离最小
Domain $\Phi(x)$ $D_{\Phi}(x,y)$ Divergence
$R$ $x^2$ $(x-y)^2$ Squared Loss
$R_{+}$ $xlogx$ $xlog(\frac x y) - (x-y)$
$[0,1]$ $xlogx + (1-x)log(1-x)$ $xlog(\frac x y) + (1-x)log(\frac {1-x} {1-y})$ Logistic Loss
$R_{++}$ $-logx$ $\frac x y - log(\frac x y) - 1$ Itakura-Saito Distance
$R$ $e^x$ $e^x - e^y - (x-y)e^y$
$R^d$ $\ x\ $ $\ x-y\ $ Squared Euclidean Distance
$R^d$ $x^TAx$ $(x-y)^T A (x-y)$ Mahalanobis Distance
d-Simplex $\sum_{j=1}^d x_j log_2 x_j$ $\sum_{j=1}^d x_j log_2 log(\frac {x_j} {y_j})$ KL-divergence
$R_{+}^d$ $\sum_{j=1}^d x_j log x_j$ $\sum{j=1}^d x_j log(\frac {x_j} {y_j}) - \sum{j=1}^d (x_j - y_j)$ Genelized I-divergence
  • 正常距离:对满足任意概率分布的点,点平均值点(期望点)应该是空间中距离所有点平均距离最小的点
  • 布雷格曼散度对一般概率分布均成立,而其本身限定由凸函数生成
    • Jensen 不等式有关?凸函数隐含部分对期望的度量
  • http://www.jmlr.org/papers/volume6/banerjee05b/banerjee05b.pdf

单点距离

Minkowski Distance

闵科夫斯基距离:向量空间 $\mathcal{L_p}$ 范数

  • 表示一组距离族

    • $p=1$:Manhattan Distance,曼哈顿距离
    • $p=2$:Euclidean Distance,欧式距离
    • $p \rightarrow \infty$:Chebychev Distance,切比雪夫距离
  • 闵氏距离缺陷

    • 将各个分量量纲视作相同
    • 未考虑各个分量的分布

Mahalanobis Distance

马氏距离:表示数据的协方差距离

  • $\Sigma$:总体协方差矩阵
  • 优点
    • 马氏距离和原始数据量纲无关
    • 考虑变量相关性
  • 缺点
    • 需要知道总体协方差矩阵,使用样本估计效果不好

LW Distance

兰氏距离:Lance and Williams Distance,堪培拉距离

  • 特点
    • 对接近0的值非常敏感
    • 对量纲不敏感
    • 未考虑变量直接相关性,认为变量之间相互独立

Hamming Distance

汉明距离:差别

  • $v_i \in {0, 1}$:虚拟变量
  • $p$:虚拟变量数量
  • 可以衡量定性变量之间的距离

Embedding

  • 找到所有点、所有维度坐标值中最大值 $C$
  • 对每个点 $P=(x_1, x_2, \cdots, x_d)$
    • 将每维 $x_i$ 转换为长度为 $C$ 的 0、1 序列
    • 其中前 $x_i$ 个值为 1,之后为 0
  • 将 $d$ 个长度为 $C$ 的序列连接,形成长度为 $d * C$ 的序列
  • 以上汉明距离空间嵌入对曼哈顿距离是保距的

Jaccard 系数

Jaccard 系数:度量两个集合的相似度,值越大相似度越高

  • $S_1, S_2$:待度量相似度的两个集合

Consine Similarity

余弦相似度

  • $x_1, x_2$:向量

欧式距离

点到平面

  • $T={(x_1,y_1),(x_2,y_2),\cdots,(x_n,y_n)}$:样本点集
  • $wx + b = 0$:超平面
Functional Margin 函数间隔
  • 函数间隔可以表示分类的正确性、确信度

    • 正值表示正确
    • 间隔越大确信度越高
  • 点集与超平面的函数间隔取点间隔最小值 $\hat{T} = \min_{i=1,2,\cdots,n} \hat{\gamma_i}$

  • 超平面参数 $w, b$ 成比例改变时,平面未变化,但是函数间隔成比例变化

Geometric Margin 几何间隔
  • 几何间隔一般是样本点到超平面的 signed distance

    • 点正确分类时,几何间隔就是点到直线的距离
  • 几何间隔相当于使用 $|w|$ 对函数间隔作规范化

    • $|w|=1$ 时,两者相等
    • 几何间隔对确定超平面、样本点是确定的,不会因为超平面表示形式改变而改变
  • 点集与超平面的几何间隔取点间隔最小值 $\hat{T} = \min_{i=1,2,\cdots,n} \hat{\gamma_i}$

Levenshtein/Edit Distance

(字符串)编辑距离:两个字符串转换需要进行插入、删除、替换操作的次数

组间距离

Single Linkage

Average Linkage

Complete Linkage

Fenchel-Legendre Duality

Legendre Transformation

勒让德变换:用 $f^{ * }(p)$ 表示凸、可导函数 $f(x)$ 的变换,其中 $p$ 是 $f(x)$ 导数

  • $x$:参数,满足 $\frac {d(p^T x - f(x))} {dx} = 0$,随 $p$ 取值改变
  • 可导:有导数;凸:导数唯一
  • 勒让德变换是实变量的实值凸函数的对合变换
    • 把定义在线性空间上的函数变换至对偶空间的函数
    • 是点、(切)线之间对偶关系的应用
      • 严格凸函数中,切线、导数一一对应
      • 函数关系 $f(x)$ 可使用 $(x, y=f(x))$ 点集表示,也可用切线集合表示
  • involution 对合:对合函数 $f$ 的反函数的为自身,即 $f(f(x))=x$;对合线性变换 $V$ 满足 $V^2 = E$

Legendre 变换理解(按 Fenchel 共轭)

  • $f^{*}(p)$:可理解为斜率为 $p$、同 $f(x)$ 有交点 $x_0$ 的直线在零点处值(截距)和 $f(x_0)$ 的最大差

    fenchel_conjugate_max_interception

  • $x$:可以理解为函数 $f(x)$ 上距离给定斜率为 $p$、过原点的直线 $f(x)=px$ 竖直距离最大的点

    fenchel_conjugate_max_vertical_distance

    • 类似一个端点为 $0$ 的 Bregman 散度
  • Legendre 变换为对合变换,进行两次的变换得到原函数

    fenchel_conjugate_transformation_cycle

  • 若视凸函数 $f(x)$ 视为积分,则其共轭 $f^{ * }(x)$ 为对另一轴积分,二者导函数互为反函数

  • 以上性质均按 Fenchel 共轭,但要求 $f(x)$ 为凸、可导函数,故等价于 Legendre 变换

Legendre 变换最大值式定义

  • Legendre 变换可以视为寻找 $px-f(x)$ 最大值(如前述)
    • $f(x)$ 为凸函数,则 $p=\frac {df(x)} {dx}$ 是最大值点
    • 则将 $f(x)$ 导函数的反函数 $x=f^{-1}(p)$ 带入即可

Legendre 变换数学性质

  • 标度性质

    由此,$r$次齐次函数的勒让德变换是$s$次齐次函数,满足

  • 平移性质

  • 反演性质

  • 线性变换性质

    • $f$:$R^n$上的凸函数
    • $A$:$R^n \rightarrow R^m$的线性变换
    • $A^{}: <Ax, y^{}> = $:$A$伴随算子

Fenchel Conjugate / 凸共轭

  • Fenchel 共轭是对 Legendre 变换的扩展,不再局限于凸、可导函数
    • Fenchel 共轭可类似 Legendre 理解,但是适用范围更广
    • 对凸函数 Fenchel 共轭的共轭即为原函数,对非凸函数 Fenchel 共轭得到原函数凸包
    • 用罗尔中值定理描述极值、导数关系:兼容 Legendre 变换中导数支撑面
  • 非凸函数线性外包络是凸函数

Fenchel-Young不等式

  • 证明

  • 按积分理解,仅$p$为$x$共轭时取等号

    fenchel_conjugate_integration_for_fenchel_young_ineq

Fenchel Conjugate 推导 Lagrange Duality

  • 原问题 Prime

  • 约束条件 $g(x) \leq 0$ 扰动函数化、求 Fenchel 共轭

  • 记 $\lambda = -y$,并将 $y=-\lambda$ 带入 $-p^{*}(y)$ 中得到

    • $\lambda = -y$
  • 将 $\inf_{x \in X, g(x) \leq u}$ 外提,并考虑到约束 $g(x) \leq u$(即 $u \geq g(x)$),则

  • 考虑 Fenchel 不等式

  • 则可得 Lagrange 对偶 PrimeDual 最优关系

    fenchel_conjugate_dual_gap

Lagrange Duality 推导 Fenchel 对偶

  • Fenchel 对偶可以视为 Lagrange 对偶的应用
  • 原问题、等价问题

  • 对上式取 Lagrange 对偶 $L(u)$、等价得到

fenchel_conjugate_duality

  • Fenchel 对偶:寻找截距差值最大的平行切线

Fourier Transformation

Fourier Transformation

(连续)傅里叶变换:将时域映射到频域的变换

  • $x$:自变量,多表示时间
  • $F(\xi)$:频率

傅里叶变换理解

  • 将自变量 $x$ 线性映射为极坐标系中角度,调整线性映射的比例(即频率),即可绘制出不同的曲线

    fourier_cycling_with_different_frequency

  • 计算不同频率下曲线围成的图像的质心(径向)坐标

    • 质心的角度坐标只需原函数沿 $x$ 轴平移即可改变
    • 若原图像不关于 $x$ 轴对称,则质心在频率 0 点处有较大值

    fourier_cycling_to_get_centroid

  • 据以上:周期函数映射在极坐标系下图像,其质心位置在对应频率下取波峰值

傅里叶变换计算

  • 利用复数项 $e^{-2\pi ix \xi}$ 表示在复平面中的旋转角度

    • $x$ 为函数自变量,$\xi$ 为频率(即自变量映射比例)
    • 傅里叶变换中旋转为缺省为顺时针,所以补足负号
    • 函数在复平面中则表示为 $f(x) e^{-2\pi ix \xi}$
  • 函数围成的曲线质心则为 $\frac 1 {x2 - x_1} \int{x_1}^{x_2} f(x) e^{-2\pi ix \xi} dx$

    • 系数 $\frac 1 {x_2 - x_1}$ 将积分结果放缩回质心,可省略
    • 将原积分区域外函数值定为 0,积分上下限扩展至 $-\infty, \infty$ 不影响积分结果
    • 函数有效取值部分越长,质心波动约迅速

傅里叶变换

Discrete Fourier Transformation

DFT:归一化二维离散傅里叶变换

Discrete Consine Transformation

余弦变换

  • 在给定区间为满足狄利克雷条件的连续实对称函数,可以展开为 仅含余弦项的傅里叶级数
  • 对于定义在正实数域上的函数,可以通过偶延拓、或奇延拓满足 上述条件

离散余弦变换

  • $(x,y) or (u,v) = (0,0)$时

  • 其他