激活函数

指数类

Sigmoid

将实数映射到(0, 1)区间

  • $z= wx+b$
  • 用途

    • 隐层神经元输出
    • 二分类输出
  • 缺点

    • 激活函数计算量大,BP算法求误差梯度时,求导涉及除法
    • 误差反向传播时容易出现梯度消失
    • 函数收敛缓慢

Hard_Sigmoid

计算速度比sigmoid激活函数快

  • $z= wx+b$

Softmax

主要用于多分类神经网络输出

  • $z_i = w_i x + b_i$:$(w_i, b_i)$组数同分类数量,和输入 $x$维度无关

  • $K$:分类数目

  • 工程意义:指数底

    • 可导$max$:拉开数值之间差距
    • 特征对输出结果为乘性:即$z_i$中输入增加会导致输出 随对应权重倍数增加
    • 联合交叉熵损失避免导数溢出,提高数值稳定性
  • 理论意义:概率论、最优化

    • softmax符合最大熵原理
    • 假设各标签取值符合多元伯努利分布,而softmax是其 link functiond的反函数#todo
    • 光滑间隔最大函数
  • Softmax回归参数$(w_i, b_i$$冗余,可以消去一组

Softplus

  • $z = wx + b$

Tanh

双曲正切函数

  • $z = wx + b$
  • $\frac{\partial tanh(z)}{\partial z} = (1 - tanh(z))^2$ :非常类似普通正切函数,可以简化梯度计算

线性类

Softsign

ReLU

Rectfied Linear Units:修正线性单元

LeakyReLU

Leaky ReLU:带泄露的修正线性

  • $\alpha$:超参,建议取0.01
  • 解决了$z < 0$时进入死区问题,同时保留了ReLU的非线性特性

Parametric ReLU

PReLU:参数化的修正线性

  • $\alpha$:自学习参数(向量),初始值常设置为0.25,通过 momentum方法更新

ThreshholdReLU

带阈值的修正线性

Linear

线性激活函数:不做任何改变

线性指数类

Exponential Linear Unit

Elu:线性指数

  • $\alpha$:超参
  • $x \leq 0$时,$f(x)$随$x$变小而饱和
    • ELU对输入中存在的特性进行了表示,对缺失特性未作定量 表示
  • 网络深度超超过5层时,ELU相较ReLU、LReLU学习速度更快、 泛化能力更好

Gausssion Error Liear Unit

GELU:ReLU的可导版本

Selu

可伸缩指数线性激活:可以两个连续层之间保留输入均值、方差

  • 正确初始化权重:lecun_normal初始化
  • 输入数量足够大:AlphaDropout
  • 选择合适的$\alpha, scale$值

梯度消失

激活函数导数太小($<1$),压缩误差(梯度)变化

Author

UBeaRLy

Posted on

2019-07-29

Updated on

2021-08-04

Licensed under

Comments