概率不等式
Inequality
Azuma-Hoeffding Inequality
Azuma-Hoeffding 不等式:设 ${Xi:i=0,1,2,\cdots}$ 是鞅差序列,且 $|X_k - X{k-1}| < c_k$,则
Hoeffding Inequality
Hoeffding 不等式:考虑随机变量序列 $X_1, X_2, \cdots, X_N, X_i \in [a_i, b_i]$
对随机变量 $\bar X = \frac 1 N \sum_{i=1}^N {X_i}$,对任意 $t>0$ 满足
对随机变量 $SN = \sum{i=1}^N X_i$,对任意 $t>0$ 满足
- 两不等式可用绝对值合并,但将不够精确
Bretagnolle-Huber-Carol Inequility
Bretagnolle-Huber-Carol 不等式:${X_i: i=1,2,\cdots,N} i.i.d. M(p1, p_2, \cdots, p_k)$ 服从类别为 $k$ 的多项分布
- $N_i$:第 $i$ 类实际个数